A mollifier method for linear operator equations of the first kind
نویسنده
چکیده
In this paper an inversion method for the solution of ill-posed linear problems is presented. It is based on the idea of computing a mollified version of the searched-for solution and the approximate inverse operator is computed with exactly given quantities. The method is compared with known methods such as the Tikhonov-Phillips and Backus-Gilbert methods. Numerical tests verify the advantages, which are: no additional or artificial discretisation of the solution is needed, locally varying point-spread functions are easily realised, a simple change of the regularisation parameter with regard of U posteriori parameter strategies is implemented and a straightforward interpretation of the regularised solution is possible. When the approximate inversion operator is computed the solution can be computed by parallel processing.
منابع مشابه
Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملNumerical solution of two-dimensional integral equations of the first kind by multi-step methods
In this paper, we develop multi-step methods to solve a class of two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the first kind. Here, we convert a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then we solve the resulted equation numerically by multi-step methods. We also verify convergence and error analysis of the method. At t...
متن کامل